

ABN 64 002 841 063

Job No: 13789/1 Our Ref: 13789/1-AA 30 August 2016

The Scots College C/- David Fleeting Architects 18 Yanko Avenue BRONTE NSW 2024 Email: Davidf@dfarchitects.com.au

Attention: Mr D Fleeting

Dear Sir

re: Proposed Basement & Tennis Courts The Scots College, Cranbrook Road, Bellevue Hill Geotechnical Investigation Report

This report presents the results of a geotechnical investigation carried out at the above site for the proposed multi-level basement car park. The investigation was approved by Mr Steven Adams of The Scots College Sydney in a signed confirmation of engagement dated 1 August 2016 and was carried out in accordance with the scope of work detailed in a Geotechnique Pty Ltd fee proposal Ref: ER.sf/Q7648-R1 dated 11 July 2016.

Proposed Development

We understand that the proposed development will comprise two multi-level basement car parks, one located below the existing tennis court and the other located below the playground near the main building. The basement excavation is anticipated to be varying between 5m and 8m below the existing ground surface.

A geotechnical investigation was required to assess the sub-surface conditions across the site in order to provide geotechnical recommendations on design of basement excavation, access ramp and retaining structures, floor slabs and footings.

Field Work

Field work for this investigation was carried out between 11 and 12 August 2016 and consisted of the following:

- Carry out a walk over survey to assess existing geological and geotechnical conditions within and in the vicinity of the site.
- Scan the proposed borehole locations for underground services to ensure boreholes are located away from existing services. A specialist services locator was hired for this purpose.
- Drill six boreholes to depths up to 12m, using a utility mounted drilling rig (Commachio MTC200) fully equipped for geotechnical investigation. Borehole locations are shown on the attached Drawing No 13789/1-AA1 and the borehole logs along with explanatory notes, are also attached.
- Conduct Standard Penetration Tests (SPT) in the boreholes at regular depth intervals to assess the strength characteristics of sub-surface soils.

Lemko Place, Penrith NSW 2750 Telephone (02) 4722 2700 e-mail: info@geotech.com.au PO Box 880, Penrith NSW 2751 Facsimile (02) 4722 2777 www.geotech.com.au

- Recovery of representative soil samples and core samples for visual assessment and laboratory testing (point load strength index).
- Measure depths to groundwater level or seepage in the boreholes, where encountered.

The field work was supervised by a Geotechnical Engineer from this company who was responsible for locating boreholes, supervision of SPT tests, sampling and preparation of field logs.

Regional Geology

The Geological Map of Sydney (Geological Series Sheet 9130, Scale 1:100,000, 1983), published by the Department of Mineral Resources indicates the residual soils within the site is anticipated to be Quarternary Age soils consisting of medium to fine grained "marine" sand with podsols. The residual soils within the site is to be underlain by Hawkesbury Sandstone comprising medium to coarse grained quartz sandstone, very minor shale and laminite lenses.

Reference to the Soil Landscape Map of Sydney (1:100,000), the landscape at the site is likely to belong to the Newport Group, which is characterized by gently undulating plains to rolling rises of Holocene sands mantling other soil materials or bedrock. Local relief <10m, slopes <10% on lower slopes and plateau surface and up to 35% against obstacles facing prevailing winds. Very high soil erosion hazard, localised steep slopes, very low soil fertility and non-cohesive topsoils are common.

Site Description

The site consisted of existing tennis courts and part of a playground. It is bounded by Cranbrook Lane to the east, large playground to the north, The Scot College buildings and Cranbrook Road to the south and west. The ground level of tennis court is about a metre below than that of the playground. Topography of the playground is flat and generally covered with grass.

Sub-surface Conditions

Sub-surface conditions encountered at the site are detailed in the attached borehole logs and summarised in the Table below:

Borehole No	Top RL (AHD m)	Termination Depth (m)	Topsoil/ Fill (m)	Natural Soil (m)	Bedrock (m)						
1	≈ 54.4	12.0	0.0 - 0.5	0.5 - >12.0	NE						
2	≈ 54.2	12.0	0.0 - 1.5	1.5 - >12.0	NE						
3	≈ 54.0	12.0	0.0 - 0.4	0.4 - >12.0	NE						
4	≈ 54.1	8.0	0.0 - 0.7	0.7 - >8.0	NE						
5	≈ 54.5	8.8	0.0 - 0.5	0.5 - 5.3	5.3 - >8.8						
6	≈ 53.8	8.0	0.0 - 2.5	2.5 - >8.0	NE						

Table 1: Subsurface Conditions

NE: Not encountered to the termination depths

Topsoil / Fill	Silty Sand, fine to coarse grained, dark brown to brown, with roots and gravels Asphaltic concrete pavement
Natural	Silty Sand, fine to medium grained, orange, yellow, brown and grey
Bedrock	Sandstone, fine to medium grained, yellow brown, slightly weathered to fresh, medium to high strength

EOTECHNIQUE

13789/1-AA The Scots College, Cranbrook Road, Bellevue Hill

Based on information presented in Table 1, the sub-surface profile within the proposed development is anticipated to comprise a sequence of topsoil / fill underlain by natural sandy soils. Sandstone bedrock was encountered only at borehole No 5 at a depth 5.3m below the surface. Depth of fill across the site varies between 0.4m and 2.5m below the existing ground surface.

Groundwater Conditions

Groundwater was not encountered to the auger drilled depths of the boreholes. Minor seepage was observed in borehole No 5 at the bedrock level (i.e., at 5.3m depth). It should be noted that the levels of groundwater/seepage might vary due to rainfall, temperature and other factors not evident during this investigation. We do not anticipate significant groundwater inflow during excavation. Groundwater inflow during excavation, if any, could be adequately managed using a conventional pump and sump system.

Laboratory Testing

Rock core obtained from borehole No 5 was photographed and tested at regular depth intervals for the determination of the Point Load Strength Index (I_{s50}). The point load strength indices for the rock cores and the assessed rock strengths, in accordance with Australian Standard AS1726-1993 (Reference 1), are summarised in the following Table 2.

Borehole No	Depth (m)	Diametral I _{s(50)} (MPa)	Axial I _{s(50)} (MPa)	Diametral Assessed Strength*	Axial Assessed Strength*
	6.2	0.29	0.37	Low	Medium
BH5	7.2	0.35	0.52	Medium	Medium
	8.5	0.58	0.72	Medium	Medium

Table 2: Point Load Strength Index

* Estimated strength, I_{s(50)}: <0.03: Extremely Low, 0.03-0.1: Very Low, 0.1-0.3: Low, 0.3-1.0: Medium, 1.0-3.0: High, 3.0-10.0 Very High # Estimated Unconfined Compressive Strength (UCS) ≈ 20 x Axial Point Load index

Bedrock Classification for Foundation Design

Based on rock strengths (Table 2) and rock discontinuities shown in the borehole logs, bedrock from the proposed development site is classified for foundation design in accordance with Pells et al (Reference 1) in the following Table 3.

Borehole Number	Existing	Bulk	Bulk	Тор Dep	th to (m)		
	Ground Level (mAHD)	Excavation Level (mAHD)	Excavation Depth (m)	Low Strength Sandstone - Class V to IV	Medium Strength Sandstone- Class III or better		
5	≈ 54.5	≈ 46.5	≈ 8	≈ 5.3			

Table 3: Bedrock Classification

It should be noted that the depth of bedrock could vary widely across the site as it was not encountered at other borehole locations drilled up to 12m deep. Natural sand deposit (Medium dense) of considerable thickness is expected below the basement excavation level at most of the area.

13789/1-AA The Scots College, Cranbrook Road, Bellevue Hill

DISCUSSION AND RECOMMENDATIONS

Excavation Condition Proposed development is understood to involve 5m to 8m deep excavation depending on the number of basements. Therefore, materials to be excavated are expected to comprise topsoil, concrete pavement, and sandy fill with gravels and loose to medium dense natural sand. Low to medium strength sandstone bedrock can be found near borehole No 5 location. It is our assessment that excavation of sandy soils (natural and fill) and low strength sandstone (Class V to Class IV) can be achieved using conventional earthmoving equipment such as excavators and dozers. However, excavation of medium to high strength sandstone (Class III or better) would be considerably more difficult and require rock hammers, rock breakers, rock saw or rippers attached to Caterpillar D9/D10 dozers.

Selection of excavation equipment should be based on site access, strength of sub-surface materials and the likely impact of vibration to structures in the vicinity of the excavation (building, houses, roads, etc.). Contractors should make their own judgement using the engineering logs and core photos attached to this report and their own experience in such circumstances when tendering for excavation works.

Acceptable vibration is based on the nature and state of neighbouring structures, which will have to be established by a dilapidation survey. As a general guide, the acceptable maximum peak particle velocity in a residential area would range from about 5mm/s to 10mm/s. In order to reduce vibrations, rock saw can be used on site boundaries and then rock hammer can be used to break the cut rock into suitable sizes for removal from the site.

Groundwater was not encountered to the auger refusal / terminal depths of the boreholes. As groundwater level could change with climatic conditions, some groundwater/seepage may occur at shallower depths if excavation is carried out immediately after or during wet climatic conditions. Based on the existing subsurface conditions, we do not expect groundwater related problems. Minor groundwater, if encountered, could be readily handled using conventional pump and sump system.

Batter Slopes and Retaining Structures

Proposed development will involve up to about 8m deep basement excavation. Cut and fill slopes during and after development works should be battered for stability or retained by engineered retaining structures. Recommended batter slopes for the stability of cut and fill slopes are presented in Table 4.

	Temp	orary	Permanent (Vertical : Horizontal)			
Material	Protected	Horizontal) Exposed	Protected	Exposed		
Controlled Fill/ Residual Soil	1.0 : 1.0	1.0 : 1.5	1.0 : 2.0	1.0 : 2.5		
Sandstone- Class V to IV	1.0 : 0.5	1.0 : 1.0	1.0 : 1.0	1.0 : 1.5		
Sandstone- Class III or better	Sub-vertical	Sub-vertical	Sub-vertical	Sub-vertical		

Table 4	Recommended	Batter	Slopes
	Recommended	Dattor	Ciopes

Surface protection of the slopes can be provided by shotcreting, which may be reinforced.

13789/1-AA The Scots College, Cranbrook Road, Bellevue Hill

Vertical excavations in Class III sandstone bedrock, where required, will have a low risk of instability. However, some local rock bolting and shotcreting might be required depending on the relative orientation of rock discontinuities (bedding partings, fractures and joint systems) and excavation faces. The borehole log and core photograph show some rock discontinuities. Therefore, it is important that an experienced Geotechnical Engineer should inspect as excavation progresses in intervals of 1.5m and identify any signs of instability and recommended suitable stabilisation methods. It is also recommended that battered slopes and excavation faces are provided with adequate surface and sub-surface drainage.

Cut and fill slopes steeper than those recommended above would need to be retained by engineered retaining structure. Appropriate retaining structures for the proposed development would comprise either contiguous pile walls (with clear spacing less than 300mm) or secant pile walls (with no clear spacing) depending on expected seepage water flow. We recommend CFA technique to install these piers.

Earth pressure distribution on cantilevered retaining walls may be assumed to be triangular and estimated as follows:

 $p_h = k\gamma H$

Where,

\mathbf{p}_{h}	=	Horizontal active earth pressure (kN/m ²)
γ	=	Bulk density of materials to be retained (kN/m ³)
k	=	Coefficient of earth pressure (ka or k0)
k _a	=	Active earth pressure coefficient
k ₀	=	At rest earth pressure coefficient
Н	=	Retained height (m)

For the design of flexible retaining structures where some lateral movement is acceptable an active earth pressure coefficient (k_a) is recommended. If it is critical to limit the horizontal deformation of a retaining structure use of an earth pressure coefficient at rest (k_0) should be considered. Recommended earth pressure coefficients for the design of retaining structures are presented in the following Table 5.

Retained Material	Unit Weight (kN/m ³)	Active Earth Pressure Coefficient	At Rest Earth Pressure Coefficient	Passive Earth Pressure Coefficient	Passive Earth Pressure (kPa)
Sandy Fill (Loose)	19	0.4	0.6	2.5	-
Natural Sand (Medium Dense)	20	0.3	0.5	3.0	-
Sandstone - Class V to IV	22	-	-	-	250
Sandstone - Class III or better	24	-	-	-	400

Table 5: Recommended Earth Pressure Coefficients

* Apply appropriate factor of safety

The above coefficients are based on the assumption that ground level behind the retaining structure is horizontal and the retained material is effectively drained. Additional earth pressures resulting from surcharge load (buildings, infrastructures, etc) on retained materials and groundwater pressure, if any, should also be allowed for in design of retaining structures. The design of any retaining structure should also be checked for bearing capacity, overturning, sliding and overall stability of the slope.

13789/1-AA The Scots College, Cranbrook Road, Bellevue Hill

Anchors might be required for the support of retaining structures. For anchored retaining walls, earth pressure distribution can be assumed trapezoidal with estimated peak value as 5H (8H for at rest condition) kPa, where H is the retained height (m). The pressure distribution should be nil at the surface, increasing to 5H (8H for at rest condition) at depth of 0.25H and remaining constant to 0.75H, then decreasing to nil at the base of the excavation.

Floor Slabs and Footings

Material at the base of basement excavation in most of the area is anticipated to be medium dense sand. However, medium strength sandstone bedrock can be encountered near borehole No 5. The depth of bedrock in other area is likely to be very high. Therefore, floor slabs for proposed buildings may be constructed as ground bearing slabs or suspended slabs supported by footings designed in accordance with recommendations provided in this report. For the design of ground bearing slabs, we recommend a Modulus of Subgrade Reaction Value of 30kPa/mm for medium dense sand and 50kPa/mm for low to medium strength sandstone.

Loading conditions from the proposed structure are not known at this stage. We consider that appropriate foundations would comprise shallow footings (pad and strip) founded in Class III or better sandstone as it is expected to be exposed at the base of basement excavation near borehole 5 location, or deep foundations (bored piers) socketed into sandstone bedrock below the base of excavation. The recommended allowable bearing pressures for design of shallow and deep foundations are presented in the following Table 6.

Founding Material	Allowable Bearing Pressure (kPa)	Allowable Shaft Adhesion (kPa)
Medium Dense Sand	250	Ignore
Sandstone - Class V to IV	1000	80
Sandstone - Class III or better	3000	250

Table 6: Recommended Allowable Bearing Pressures

The recommended allowable shaft adhesions against uplift pressures are half the shaft adhesions for compressive loads presented in Table 6. For footings founded in bedrock total settlements under the recommended allowable bearing pressures are estimated to be about 1% of pier diameter or minimum footing dimension. Differential settlements are estimated to be about half the estimated total settlements.

As depths to bedrock with the recommended allowable bearing pressures could vary across the site, the founding depths of footings to be constructed will also vary. As mentioned earlier that the depth of bedrock could vary widely across the site as it was only encountered at borehole No 5 location. If the depth of bedrock is too deep, screw piers in medium dense sand can be an alternative option.

Limitations

Assessments and recommendations presented in this report are based on site observation and information from six boreholes. Although we believe that the sub-surface profile presented in this report is indicative of the general profile across the site, it is possible that the sub-surface profile across the site could differ from that encountered in the boreholes. Likewise, comments on groundwater are based on observation during field work. We recommend that this company is contacted for further advice if actual site conditions encountered during basement excavation differ from those presented in this report.

13789/1-AA The Scots College, Cranbrook Road, Bellevue Hill

If you have any questions, please do not hesitate to contact the undersigned.

Yours faithfully GEOTECHNIQUE PTY LTD

Asieful

DR MD ARIFUL ISLAM Senior Geotechnical Engineer

Attached Drawing No 13789/1-AA1 (BH1-6 Borehole Location Plan) Borehole Logs (1 to 4), Core Photos and Explanatory Notes

References

1. Pells, P J N, Mostyn, E and Walker, B F, Foundations on Sandstone and Shale in the Sydney Region, Australian Geomechanics Journal, Dec 1998.

Client : David Fleeting Architects Job No. : 13789/1 Project : Proposed Basement and Tennis Court Borehole No. : 1 Location : The Scots College Date : 11/08/2016 Cranbrook Road, Woollahra Logged/Checked by: MT drill model and mounting : Commachio Utility Mounted slope : deg. R.L. surface : ≅											
			-	R.L. sı							
hole diamet		mn		bearing : deg.	dat	eg. R.L. surface : ≅54. um : AHD					
method groundwater env samples PID reading (ppm)	geo samples field test	, depth or R.L. in meters	surfaction symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetromete kPa				
E 65 6 6 6 6 6 6 6 7 <th7< th=""> <th7< th=""> <th7< th=""></th7<></th7<></th7<>	ň iž P N=6 2,3,3 P N=17 6,8,9 P N=20 8,9,11 P N=20 8,9,11 P N=17 10,15/		SM SM	Tennis Court AC Pavement 20mm FILL: Silty Sand, fine to coarse grained, brown, with gravel Silty SAND, fine to medium grained, orange to brown Silty SAND, fine to medium grained, yellow Silty SAND, fine to medium grained, yellow	<u>к</u> 3	L		Alluvial			
								_			

	Pro Lo	ent : oject catio	t : on :	Pi Ti C	ropos ne Sc ranbr	ots Co ook Ro	sem olleg bad,	nent ar le , Wool	id Tennis Court ahra	Bore Date Logg	No.: 1 hole N : 11/(ed/Che	o. : 08/201 cked b	1 6 y: MT	
C			del ar amet			ing : r	C nm	omma	chio Utility Mounted bearing :	slope : deg.		eg. um :	R.L. sı	ırface :
method	vater	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCR soil type, plasticity or particle colour, secondary and minor	IPTION e characteristic,	moisture condition	consistency density index	hand penetrometer kPa	
	Dry								Borehole No 1 terminated at 1	12.0m				

	Client :David Fleeting ArchitectsJob No. : 1Project :Proposed Basement and Tennis CourtBorehole No. : 1Location :The Scots College Cranbrook Road, WoollahraDate : 11/0drill model and mounting :Commachio Utility Mountedslope :										o. : 2 08/201 cked b	.: 2 3/2016 ked by : MT		
			amet			-		Unina	bearing :	deg.		um:	N.L. 31	AHD
method	groundwater	env samples	PID reading (ppm)	geo samples				classification symbol	MATERIAL DESCRIPTIO soil type, plasticity or particle cha colour, secondary and minor con	DN aracteristic,	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
		GP GP G G G		Ρ	N=8 3,3,5	0 1 2 2 3 3 3 4 5 6 7 8 9 9		SM SM	AC 20mm FILL: Roadbase Gravel, grey FILL: Silty Sand, fine grained, grey Silty SAND, fine grained, pale grey Silty SAND, fine to medium graine Silty SAND, fine to medium graine brown	y ed, brown	M M	MD		Alluvial No Sample recovered from auger

	Pro Lo	ent : oject catio	: : on :	Pi Ti C	ropos ne Sc ranbr	ots Co ook Ro	sem olleg bad,	nent ar le , Wool	id Tennis Court ahra	Bore Date Logg	No.: 1 hole N : 11/(ed/Che	l o. : 2 08/201 cked b	2 6 y: MT	
C			iel ar amet			ing : r	C nm	omma	chio Utility Mounted bearing :	slope : deg.		eg. um :	R.L. su	irface :
method	vater	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCR soil type, plasticity or particle colour, secondary and minor	IPTION e characteristic,	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
	Dry								Borehole No 2 terminated at 1	2.0m				

	Pro Lo	ent : oject catic	:: on:	Pi Ti C	ropos he Sc ranbr	ots Co ook Ro	sem olleg bad,	ent ar e Wool	nd Tennis Court Bo Da lahra Log	o No. : rehole N te : 11/ gged/Che	lo. : 08/201 cked b	3 6 y: MT	
						ing :	С	omma	chio Utility Mounted slope :		-	R.L. sı	irf ace :
	ho	le di	amet	er :	125	n	nm		bearing : deg.	dat	um :	-	AHD
method	groundwater	env samples	PID reading (ppm)	geo samples	field test	, depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic colour, secondary and minor components.	, moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
		GP				0	XX		CONCRETE SLAB 170mm FILL: Silty Sand, fine to coarse grained, brow	'n			
		G				-	XXX	SM	Silty SAND, fine to medium grained, grey	M	L		Alluvial
				Р	N=9	1							
					4,4,5	_		SM	Silty SAND, fine to medium grained, brown	М	L		
						_							_
		G				2							
						_		SM	Silty SAND, fine to medium grained, yellow	M	L	-	_
				Ρ	N=8 3,3,5	_			brown				
						3 —							
						_							-
						_							_
						4		SM	Silty SAND, fine to medium grained, yellow	М	MD	-	
				Ρ	N=21 9,9,12	_			····, ····, ···· · ··· ··· ··· ··· ···				_
						_							_
						5							
						_							_
						_							_
						6							
				Ρ	N=19 7,8,11								_
						_							-
						-							-
				Р	N=18 5,8,10	7							-
					5,0,10								_
						_							_
						8 —							
													_
													-
						9 ——							—
						_							-

	Pro Lo	ent : oject catio	: : on :	Pi Ti C	ropos ne Sc ranbr	ots Co ook Ro	sem olleg bad,	nent ar le , Wool	id Tennis Court ahra	Bore Date Logg	No.: 1 hole N : 11/(ed/Che	o.: 08/201 cked b	3 6 y: MT	
C			lel ar amet			ing : r	C nm	omma	chio Utility Mounted bearing :	slope : deg.		eg. um :	R.L. sı	ırface :
method	vater	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCR soil type, plasticity or particle colour, secondary and minor	IPTION e characteristic,	moisture condition	consistency density index	hand penetrometer kPa	
	Dry								Borehole No 3 terminated at 1	12.0m				

	Pro Lo	ent : oject catio	t : on :	P TI C	ropos he Sc ranbr	ots Co ook Ro	sem lleg bad,	nent ar je , Wool	id Tennis Court Bo Da lahra Log	b No. : rehole te : 12 gged/Ch	No. : 2/08/20 ⁷ ecked k	4 16 by: MT	
						-		omma	chio Utility Mounted slope :		-	R.L. sı	Irface : ≅54.1
_	ho	le di	amet	er:	125		۱m		bearing : deg.	da	atum :	<u> </u>	AHD
method	groundwater	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic colour, secondary and minor components.	, moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
						0			TOPSOIL/FILL: Silty Sand, fine to medium grained, dark brown, with roots				
		G				1	XXX	SM	Silty SAND, fine to medium grained, pale gre	уМ	VL		
				Р	N=3 1,1,1								
						_							
						2		SM	Silty SAND, fine to medium grained, brown g	rey M	L	-	
						_							
				Р	N=4 1,2,2	_							
						3							
								SM	Silty SAND, fine to medium grained, yellow	м	L	-	
						4			brown				
				Р	N=7 4,3,4	_							
						_							
						5							
						_				м	MD	-	
				Р	N=17 5,8,9	6							
					N=20	7							
				P	N=20 7,10,10								
	Dry												
1	`	L							Borehole No 4 terminated at 8.0m			1	
						9							
						_							

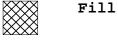

	Pro Lo	ent : oject catic	: on:	Pi Ti C	ropos ne Sc ranbr	ots Co ook Ro	sem olleg oad,	ient ar ie Wool	nd Tennis Court Bore Date lahra Loge	No.: 1 ehole N e: 12/0 ged/Che	l o. : 08/201 cked b	5 6 9y: MT	
d						ing :		omma	chio Utility Mounted slope :		-	R.L. sı	irface : ≅54.5
	ho	e di	amet	er :	125		nm		bearing : deg.	dat	um :		AHD
method	groundwater	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
						0			TOPSOIL/FILL: Silty Sand, fine to medium grained, brown, with roots				_
		GP				_		SM	Silty SAND, fine to medium grained, grey	М	L		Alluvial
					N=6	1 —							
				Р	2,2,4	_							_
						_							_
						2		SM	Silty SAND, fine to medium grained, brown yellow	М	L	-	
						_			,				_
				Р	N=9 2,3,6	3							_
						-							_
						_							_
						4	-			M	MD	-	_
				Ρ	N=16 5,6,10	_							_
						_							_
						5							
				<u>P</u>	N= \20/100	_			SANDSTONE, fine to medium grained, yellow brown				Bedrock Groundwater seepage at 5.3m
┝									Refer to Cored Log				
						-							-
						_							_
						7							
						-							-
						8							
													_
						_							_
						9	$\left \right $						
						-							_
L													_

engineering log cored borehole

form no. 003 version 03 - 09/10

	Client	t :	D	avid Fleeting Architects										3789/1		
	Proje			roposed Basement and Tennis Cour	t									o.: 5		
	Locat	tion :		he Scots College										8/2016		
				ranbrook Road, Woollahra							gge			ked by: MT		
			and	mounting : Commachio Utility	/ Mou	ntec			ope				leg.		≅54	
	core	size:	i	NMLC				bear	ing	:		C	leg	. datum :	AH	ID
		<u>ا</u> ن		CORE DESCRIPTION			Ι.	oint l	heol					DEFECT DETAILS		
ift	ē	depth of R.L. in meters	graphic log		weathering	ء	'	inde				fec		DESCRIPTIC	N	
barrel lift	water Ioss/level	oth c nete	phic	rock type, grain characteristics, colour, structure, minor components.	athe	strength		stren I _S (5	gth ៣		spa (n	nm)		type, inclination, thick planarity, roughness, o		
bar	w at los	in dep	gra	· · · ·	Ň	stre	EI	VL _ N	י _ן ע	н		8 8	20 20	Specific		y. neral
		-6		Coring commenced at 6.0m												
		_		SANDSTONE, fine to medium grained, pale yellow	FR	н		>	ĸ					_ 6.1m: Be=30°, Un		
		_												_		
		_												_		
		7—												6.8m: Jo=70°, St –		
		_						>	<					-		
		_												F		
		_												-		
		8—												_		
		_												-		
		_							\times					-		
														-		
		9 —		Borehole No 5 terminated at 8.8m										_		
		_												-		
		_												-		
														-		
		10 —												_		
		_												-		
														-		
		_												-		
		11 —												_		
		_														
		_												F		
		_												-		
		12 —												_		
														-		
		_												-		
		_												-		
														-		
														-		
		_												-		
		13 — — — —												-		
		14 —														
		14 — — — —												-		
		_												-		
		_												-		
		15												-		
							-					-				

F	Pro Loc	ent : oject catio	:: on:	Pi Tł Ci	ropos ne Sc ranbr	ots Co ook Ro	sem olleg bad,	nent ar le , Wool	d Tennis Court ahra	Bore Date Logg	No.: 1 hole N : 12/(ed/Che	o.: (08/201 cked b	6 6 y: MT	
						-		omma	chio Utility Mounted	slope :		-	R.L. sı	urface: ≅53.8
		e di	amet		125		nm	-	bearing :	deg.	dat	um :		AHD
method	groundwater	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIP soil type, plasticity or particle colour, secondary and minor c	characteristic, components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
						0			TOPSOIL/FILL: Silty Sand, fine grained, brown, with some roots	to medium s				
		GP												
														_
				Р	N=4 2,2,2	_								
	}	GP				_								
	ł					2								_
						_								
	ŀ	GP		Р	N=4	_		SM	Silty SAND, fine to medium grai	ined, brown	м	VL		Alluvial
					2,2,2	3			yellow					_
						_								
						4					м	L	-	_
				Р	N=9 3,4,5									
						_								
						5								-
				Р	N=16	_					м	MD	1	
				-	6,7,9	6								-
						_								
						7								-
				Р	N=27 6,11,16									
						_								
4									Borehole No 6 terminated at 8.0	Jm				
									Derendie no o terminateu al 0.0					
						_								
						9								_


KEY TO SYMBOLS

Symbol Description

Strata symbols

×××	

(Bitumen, Concrete Slab, etc)

Silty Sand

Pavement

Fill / Topsoil

Sandstone

Misc. Symbols

Seepage

Descriptions of various line types (solid, dotted, etc.)

- ____ Profile change
- ___ Gradual profile change

Notes:

- 1. Exploratory borings were drilled between 12/08/2016 and 12/08/2016 using a 50, 100 and 125mm diameter continuous flight power auger.
- 2. These logs are subject to the limitations, conclusions and recommendations in this report.
- 3. Results of tests conducted on samples recovered are reported on the logs.

KEY TO SYMBOLS

Symbol Description

Strata symbols

Sandstone

Misc. Symbols

 \times Point Load Strength

Descriptions of various line types (solid, dotted, etc.)

- ____ Profile change
- ____ Gradual profile change

Notes:

- 1. Exploratory borings were drilled between 12/08/2016 and 12/08/2016 using a 50, 100 and 125mm diameter continuous flight power auger.
- 2. These logs are subject to the limitations, conclusions and recommendations in this report.
- 3. Results of tests conducted on samples recovered are reported on the logs.

Log Column	Symbol/Value	Description
Drilling Method	V-bit	Hardened steel 'V' shaped bit attached to auger
0	TC-bit	Tungsten Carbide bit attached to auger
	RR	Tricone (Rock Roller) bit
	DB	Drag bit
	BB	Blade bit
Groundwater	Dry	Groundwater not encountered to the drilled or auger refusal depth
		Groundwater level at depths shown on log
		Groundwater seepage at depths shown on log
Environment Sample	GP G	Glass bottle and plastic bag sample over depths shown on log Glass bottle sample over depths shown on log
	P	Plastic bag sample over depths shown on log
PID Reading	100	PID reading in ppm
Geotechnical Sample	DS	Disturbed Small bag sample over depths shown on log
	DB	Disturbed Bulk sample over depths shown on log
<u> </u>	U ₅₀	Undisturbed 50mm tube sample over depths shown on log
Field Test	N=10 3,5,5	Standard Penetration Test (SPT) 'N' value. Individual numbers indicate blows per 150mm penetration.
	N=R	'R' represents refusal to penetration in hard/very dense soils or in cobbles or
	10,15/100	boulders.
		The first number represents10 blows for 150mm penetration whereas the second
		number represents 15 blows for 100mm penetration where SPT met refusal
	DCP/PSP 5	Dynamic Cone Penetration (DCP) or Perth Sand Penetrometer (PSP). Each
		number represents blows per 100mm penetration. 'R/10' represents refusal after
	6	10mm penetration in hard/very dense soils or in gravels or boulders.
	R/10	
Classification	GP	Poorly Graded GRAVEL
	GW	Well graded GRAVEL
	GM	Silty GRAVEL
	GC	Clayey GRAVEL
	SP	Poorly graded SAND
	SW	Well graded SAND
	SM SC	Silty SAND Clayey SAND
	ML	SILT / Sandy SILT / clayey SILT, low plasticity
	ML	SILT / Sandy SILT / clayey SILT, medium plasticity
	MH	SILT / Sandy SILT / clayey SILT, high plasticity
	CL	CLAY / Silty CLAY / Sandy CLAY / Gravelly CLAY, low plasticity
	CI	CLAY / Silty CLAY / Sandy CLAY / Gravelly CLAY, medium plasticity
	СН	CLAY / Silty CLAY / Sandy CLAY / Gravelly CLAY, high plasticity
Moisture Condition		
Cohesive soils	M <pl< td=""><td>Moisture content less than Plastic Limit</td></pl<>	Moisture content less than Plastic Limit
	M=PL M>PL	Moisture content equal to Plastic Limit Moisture content to be greater than Plastic Limit
	INI>FL	Moisture content to be greater than Plastic Linit
Cohesionless soils	D	Dry - Runs freely through hand
	M	Moist - Tends to cohere
	W	Wet - Tends to cohere
Consistency		Term Undrained shear strength, C _u (kPa) Hand Penetrometer (Qu)
Cohesive soils	VS	Very Soft ≤12 <25
	S	Soft >12 ≤25 25 - 50
	F	Firm >25 ≤50 50 − 100
	St	Stiff >50 ≤100 100 - 200
	VSt H	Very Stiff >100 ≤200 200 – 400 Hard >200 >400
Density Index		Term Density Index, I _D (%) SPT 'N' (blows/300mm)
Cohesionless soils	VL	Very Loose ≤15 ≤5
	L	Loose >15 ≤35 >5 ≤10
	Μ	Medium Dense >35 ≤65 >10 ≤30
	D	Dense >65 ≤85 >30 ≤50
	VD	Very Dense >85 >50
Hand Penetrometer	100	Unconfined compressive strength (q _u) in kPa determined using pocket
Remarks	200	penetrometer, at depths shown on log Geological origin of soils
Romana	Residual	Residual soils above bedrock
	Alluvium	River deposited Alluvial soils
	Colluvial	Gravity deposited Colluvial soils
	Aeolian	Wind deposited Aeolian soils

GEOTECHNIQUE PTY LTD

AS1726 – Unified Soil Classification System

Major D	Divisions	Particle size (mm)	Group Symbol	Typical Names	Field Ident	ifications Sand a	-				Laboratory classifie	ation	
	BOULDERS	200							% (2) < 0.075mm	Plasticity of Fine Fraction	$C_u = D_{60}/D_{10}$	$C_c = (D_{30})^2 / (D_{10}D_{60})$	Notes
	COBBLES	63						'su					
		Coarse 20	GW	Well-graded gravels, gravel-sand mixtures, little or no fines		rain size and subs te sizes, not enou o dry strength		or Divisions'	0-5	-	>4	between 1 and 3	1. Identify lines by the method given for fine grained soils
	GRAVELS (more than half of coarse fraction is		GP	Poorly graded gravels, gravel- sand mixtures, little or no fines, uniform gravels	some intermedia	one size or range o ate sizes missing, arse grains, no dry	not enough	the criteria given in 'Major	0-5	-	Fails to co	mply with above	grained sons
COARSE GRAINED SOILS (more than half of	larger than 2.36mm)	Medium 6	GM	Silty gravels, gravel-sand-silt mixtures	'Dirty' materials zero to medium	with excess of no dry strength	n-plastic fines,	riteria giv	12-50	Below 'A' line or <i>I_p<4</i>	-	-	2. Borderline classifications occur when the percentage of
material less 63mm is larger than 0.075mm)		Fine 2.36	GC	Clayey gravels, gravel-sand-clay mixtures	'Dirty' materials medium to high	with excess of pla dry strength	stic fines,	요	12-50	Above 'A' line or <i>I_p</i> >7	-	-	fines (fraction smaller than 0.075mm size) is
		Coarse 0.6	SW	Well-graded sands, gravelly sands, little or no fines		rain size and subs te sizes, not enou o dry strength		s according	0-5	-	>6	between 1 and 3	greater than 5% and less than 12%. Borderline classifications
	SANDS (more than half of	Medium 0.2	SP	Poorly graded sands and gravelly sands; little or no fines, uniform sands	some intermedia	one size or range ate sizes missing, arse grains, no dry	not enough	classification of fractions	0-5	-	Fails to co	mply with above	require the use of dual symbols e.g. SP-SM, GW- GC
	coarse fraction is smaller than 2.36mm)		SM	Silty sands, sand-silt mixtures	'Dirty' materials zero to medium	with excess of no dry strength	n-plastic fines,	ification o	12-50	Below 'A' line or <i>l_p<</i> 4	-	-	
		Fine 0.075	SC	Clayey sand, sand-clay mixtures	'Dirty' materials medium to high	with excess of pla dry strength	stic fines,	for	12-50	Above 'A' line of <i>I_p</i> >7	-	-	
			ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight	Dry Strength None to low	Dilatancy Quick to slow	Toughness None	sing 63mm		Below 'A' line			
	SILTS & CLAYS (liqu	id limit < 50%)	CL, CI	plasticity Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	Medium to high	None to very slow	Medium	of material passing	Ē	Above 'A' line	40		
FINE GRAINED			OL	Organic silts and organic silty clays of low plasticity	Low to medium	Slow	Low	tion of ma	sing 0.075	Below 'A' line	230	c	
SOILS (more than half of material less than 63mm is smaller than			МН	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts	Low to medium	Slow to none	Low to medium	the gradation	More than 50% passing 0.075mm	Below 'A' line	CL CL 200 000 000 000 000 000 000 00	CI NE	
0.075mm)	SILTS & CLAYS (liqu	id limit > 50%)	СН	Inorganic clays of medium to high plasticity, fat clays	High to very high	None	High	Use	vore than	Above 'A' line	- UI Dasticity Dasticity Last		OH or
			ОН	Organic clays of medium to high plasticity, organic silts	Medium to high	None to very slow	Low to medium		~	Below 'A' line		OL ar ML	МН
	HIGHLY ORGANIC S	OILS	Pt	Peat and highly organic soils	Identified by col generally by fibr	our, odour, spong ous texture	y feel and		Effervesco	es with H ₂ O ₂		20 30 40 50 Liquid Limit (W _L), perce	60 70 80 ent

Log Symbols & Abbreviations (Cored Borehole Log)

Log Column	Symbol	Description	с,
Core Size	NQ	Nominal Core Size (mm 47)
	NMLC	52	
Water Loss	HQ	63 Complete water loss	
		Partial water loss	
Weathering	FR	Fresh	Rock shows no sign of decomposition or staining
	SW	Slightly Weathered	Rock is slightly discoloured but shows little or no change of strength from fresh rock
	DW	Distinctly Weathered	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by ironstaining. Porosity may be increased by leaching, or may be decreased by deposition of weathering products in pores
	EW	Extremely Weathered	Rock is weathered to such an extent that it has 'soil' properties, i.e. it either disintegrate or can be remoulded, in water
	RS	Residual Soil	Soil developed on extremely weathered rock; the mass structure and substance fabric are no longer evident; there is a large change in volume but soil has not been significantly transported
Strength	-		Point Load Strength Index (I _{s50} , MPa)
	EL VL	Extremely Low	≤0.03 >0.03 ≤0.1
	L	Very Low Low	>0.1 ≤0.3
	M	Medium	>0.3 ≤1
	н	High	>1 ≤3
	VH	Very High	>3 ≤10
Defect Specing	EH	Extremely High	>10
Defect Spacing		Description Extremely closely space	d Spacing (mm) d <20
		Very closely spaced	20 to 60
		Closely spaced	60 to 200
		Medium spaced	200 to 600
		Widely spaced	600 to 2000
		Very widely spaced	2000 to 6000
Defect Description		Extremely widely spaced	d >6000
Defect Description Type	Вр	Bedding parting	
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Fp	Foliation parting	
	Jo	Joint	
	Sh	Sheared zone	
	Cs Ds	Crushed seam Decomposed seam	
	ls	Infilled seam	
Macro-surface geometry	St	Stepped	
	Cu Un	Curved Undulating	
	lr	Irregular	
	PI	Planar	
NF (
Micro-surface geometry	Ro Sm	Rough Smooth	
	SI	Slickensided	
	cn	clean	
Coating or infilling	sn	stained veneer	
	vn cg	coating	

Grain Size mm		Bedded rocks (mostly sedimentary)											
More than 20	than		ain Size scription		At least 50% of grains are of carbonate				At least 50% of grains are of fine-grained volcanic rock				
	6	RUDACEOUS		CONGLOMERATE Rounded boulders, cobbles and gravel cemented in a finer matrix Breccia Irregular rock fragments in a finer matrix			DLOMITE ed)	Calcirudite		Fragments of volcanic ejecta in a finer matrix Rounded grains AGGLOMERATE Angular grains VOLCANIC BRECCIA	SALINE ROCKS Halite Anhydrite		
	0.6	ARENACEOUS	Coarse Medium Fine	SANDSTONE Angular or rounded grai cemented by clay, calci Quartzite Quartz grains and silice Arkose Many feldspar grains Greywacke	te or iron minerals		LIMESTONE and DOLOMITE (undifferentiated)	Calcarenite	Cemented volcanic as		Gypsum		
	0.06 0.002 Less than 0.002	ARGII	LLACEOUS	Many rock chips MUDSTONE SHALE Fissile	SILTSTONE Mostly silt CLAYSTONE Mostly clay	Calcareous Mudstone		Calcisiltite Calcilutite	CHALK	Fine-grained TUFF	-		
	Amorphous or crypto-crystalline			Flint: occurs as hands of nodules in the chalk Chert: occurs as nodules and beds in limestone and calcareous sandstone							COAL LIGNITE		
				Granular cemented – except amorphous rocks									
				SILICEOUS	CALCAREOUS				SILICEOUS	CARBONACEOUS			
		SEDIMENTARY ROCKS Granular cemented rocks vary greatly in strength, some sandstones are stronger than m specimens and is best seen in outcrop. Only sedimentary rocks, and some metamorphic Calcareous rocks contain calcite (calcium carbonate) which effervesces with dilute hydro								c rocks derived from them, contain fossils			

AS1726 – Identification of Sedimentary Rocks for Engineering Purposes

AS1726 – Identification of Metamorphic and Igneous Rocks for Engineering Purposes

liated rocks (mostly metamorphic)		Rocks with	massive structure	and crystalline texture	(mostly igneous)		Grain size (mm)		
		Grain size description	Pe	gmatite		Pyrosenite	More than 20		
GNEISS	MARBLE					Peridorite	20		
Well developed but often widely spaced foliation sometimes with schistose bands	QUARTZITE		GRANITE	Diorite	GABBRO		6		
	Granulite	COARSE	phorphyritic and	are then described,					
Migmatite Irregularly foliated: mixed schists and gneisses	HORNFELS						2		
SCHIST Well developed undulose foliation; generally much mica	Amphibolite		Micorgranite	Microdiorite			0.6		
	Serpentine	MEDIUM			Dolerite		0.2		
							0.06		
PHYLLITE Slightly undulose foliation; sometimes 'spotted'			RHYOLITE	ANDESITE	DACALT		0.002		
SLATE Well developed plane cleavage (foliation)		FINE			BASALI		Less than 0.002		
Mylonite Found in fault zones, mainly in igneous and metamorphic areas			Obsidian	Volcanic glass			Amorphous or cryptocrystallin e		
CRYSTALLINE			Pale<	>Dark					
SILICEOUS Mainly SILICEOUS			ACID Much quartz	INTERMEDIATE Some quartz	BASIC Little or no quartz	ULTRA BASIC			
METAMORPHIC ROCKS Most metamorphic rocks are distinguished by foliation which may impart fissility. Foliation in gneisses is best observed in outcrop. Non- foliated metamorphics are difficult to recognize except by association. Any rock baked by contact metamorphism is described as 'hornfels' and is generally somewhat stronger than the parent rock			IGNEOUS ROCKS Composed of closely interlocking mineral grains. Strong when fresh; not porous Mode of occurrence : 1 Batholith; 2 Laccoliths; 3 Sills; 4 Dykes; 5 Lava Flows; 6 Veins						
	GNEISS Well developed but often widely spaced foliation sometimes with schistose bands Migmatite Irregularly foliated: mixed schists and gneisses SCHIST Well developed undulose foliation; generally much mica PHYLLITE Sightly undulose foliation; sometimes 'spotted' SLATE Well developed plane cleavage (foliation) Mylonite Found in fault zones, mainly in igneous and metamorphic areas E HIC ROCKS phic rocks are distinguished by foliation in gneisses is best observer orphics are difficult to recognize exceed dby contact metamorphism is describ y somewhat stronger than the parent	GNEISS MARBLE Well developed but often widely spaced foliation sometimes with schistose bands QUARTZITE Migmatite Irregularly foliated: mixed schists and gneisses HORNFELS SCHIST Well developed undulose foliation; generally much mica Amphibolite PHYLLITE Slightly undulose foliation; sometimes 'spotted' Serpentine SLATE Well developed plane cleavage (foliation) Mainly SILICEOUS Mylonite Found in fault zones, mainly in igneous and metamorphic areas Mainly SILICEOUS E Mainly SILICEOUS	GNEISS MARBLE QUARTZITE QUARTZITE Spaced foliation sometimes with schistose bands Granulite COARSE Granulite Migmatite Granulite Irregularly foliated: mixed schists HORNFELS Amphibolite Amphibolite SCHIST Amphibolite Well developed undulose foliation; generally much mica Serpentine PHYLLITE Sightly undulose foliation; sometimes 'spotted' SLATE Well developed plane cleavage (foliation) Mylonite FINE Found in fault zones, mainly in igneous and metamorphic areas IGNEOUS RC Composed of Mode of occu E Mainly IGNEOUS RC Composed of Mode of occu IIC ROCKS phic rocks are distinguished by foliation which may Foliation in gneisses is best observed in outcrop. Non-roophics are difficult to recegnize except by association. IGNEOUS RC Composed of Mode of occu Mode of occu Wode of occu Mode of occu	GNEISS MARBLE Grain size description Pe GNEISS Well developed but often widely spaced foliation sometimes with schistose bands MARBLE GUARTZITE GRANITE Migmatite Granulite COARSE These rocks are phorphyritic and for example, as Migmatite HORNFELS Amphibolite Micorgranite SCHIST HORNFELS Amphibolite Micorgranite SCHIST Well developed undulose foliation; generally much mica Serpentine MEDIUM Micorgranite PHYLLITE Sightly undulose foliation; sometimes spotted' SLATE These rocks are phorphyritic and as porphyries SLATE Well developed plane cleavage (foliation) Obsidian Obsidian Functional in fault zones, mainly in igneous and metamorphic areas SLICEOUS IGNEOUS ROCKS Funct CROCKS Mainly SLICEOUS IGNEOUS ROCKS Pale Mainly IGNEOUS ROCKS Composed of closely interlocking Much quartz IIC ROCKS phic rocks are distinguished by foliation which may Foliation in gneisses is best opise reved in outcrop. Nonond do y contact metamorphism is described as 'hornfels' by somewhat stronger than the parent rock IGNEOUS ROCKS	GNEISS MARBLE Grain size description Pegmatite GNEISS Well developed but often widely spaced foliation sometimes with schistose bands QUARTZITE Granuite COARSE These rocks are sometimes phorphyritic and are then described, for example, as porphyritic granite Migmatite Irregularly foliated: mixed schists and gneises HORNFELS Micorgranite Microdiorite SCHIST HORNFELS Amphibolite Micorgranite Microdiorite SCHIST Amphibolite Micorgranite Microdiorite SCHIST Amphibolite Micorgranite Microdiorite Staft Serpentine MEDIUM These rocks are sometimes phorphyritic and are then described as porphyries Sightly undulose foliation; sometimes 'spotted' Serpentine MEDIUM These rocks are sometimes phorphyritic and are then described as porphyries SLATE Well developed plane cleavage (tolation; sometimes rights and metamorphic areas Obsidian Volcanic glass E Quantz INTERMEDIATE Some quartz IC ROCKS Mainly Sill CEOUS INTERMEDIATE Flore occks are distinguished by foliation which may Phorphyrities are distinguished by foliation which may Phorphyritie and are then described as porphyries INTERMEDIATE Store cocks are distinguished by foliation which may Phorphyritie and are themorphism is described as horm	GNEISS MARBLE Grain size Pegmattle GNEISS QUARTZITE QUARTZITE GRANITE Diorite GABBRO Migmatite Granuite COARSE These rocks are sometimes GABBRO Migmatite Granuite COARSE These rocks are sometimes GABBRO Migmatite HORNFELS HORNFELS Microgranite Microdiorite SCHIST HORNFELS Amphibolite Micorgranite Microdiorite Veli developed undulose Fill MEDIUM These rocks are sometimes Dolerite Schists Serpentine MEDIUM These rocks are sometimes Dolerite Sightly undulose foliation; sometimes 'spotted' Serpentine RHYOLITE ANDESITE Dolerite SLATE Well developed plane cleavage (foliation); Obsidian Volcanic glass BASALT Monite SLATE Mainly SILICEOUS ACID NTERMEDIATE BASAC Flore Mainly IGNEOUS ROCKS Monite areas Corposed of closely interfocking mineral grains. Strong when fresh; not p or some when fresh; not p quartz Corposed of closely interlocking mineral grains. Strong when fresh;	CNEISS MARBLE Grain size Begnatite Pyrosenite Well developed but often widely spaced foliation sometimes with schistose bands QUARTZITE GRANITE Diorite GABBRO Migmatile inregulary foliated: mixed schists Granulite COARSE These rocks are sometimes phorphyritic and are then described, for example, as porphyritic granite GABBRO Peridorite Migmatile inregulary foliated: mixed schists HORNFELS Amphibolite Micorgranite Micorgranite Diorite GABBRO SCHIST Well developed undulose foliation; sometimes sponted Amphibolite Micorgranite Diolerite Dolerite Staff Serpentine MEDIUM These rocks are sometimes sponted Dolerite Dolerite Vell developed plane cleavage (fdiation; sponted for sponted for a spontyritic and are then described as porphyrites BASALT Dolerite Myorite Food in fault zones, mainly in gneous and metamorphic areas Obsidian Volcanic glass Dolerite E Mainly SLICEOUS ACID INTERMEDIATE BASALT ULTRA BASIC Myorite Some quartz Some quartz Some quartz Some quartz ULTRA BASIC Mic		